Practical Rationale for Describing Software Architecture
Beyond Programming-in-The-Large

Kari Smolander¹, Tero Päivärinta²
¹ Lappeenranta University of Technology, Telecom Business Research Center (TBRC), Department of Information Technology, Laboratory of Information Processing, P.O. Box 20, FIN-53851 Lappeenranta, Finland, kari.smolander@lut.fi, Tel. +358 40 546 3493, Fax +358 5 621 2899
² Agder University College, Dept. of Information Systems, Serviceboks 422, 4604 Kristiansand, Norway, tero.paivarinta@hia.no, Tel. +47 3814 1662 (on leave from University of Jyväskylä, Dept. of Computer Science and Information Systems)

Abstract: The practical rationale for architecture design and description of software-based systems were inquired in three software-producing organizations. In addition to the traditional programming-in-the-large view that dominates the mainstream research on software architecture, this grounded-theory based study suggests that other important purposes for software architecture, especially such related to decision-making and mutual understanding among the stakeholders of software development, exist as well in practice. Their emergence depends on several factors associated with the software development organization in question: such as the variety of customers and other stakeholders, the characteristics of software products, and the nature of the business.

Key words: software architecture, qualitative research, architecture description, organizational aspects of software architecture

1. INTRODUCTION

Despite of the fact that architecture has become a well-recognized issue of the software engineering research, a dearth of understanding of how and why architectures are designed and described in actual software-producing organizations continues. The mainstream literature on software architecture
Kari Smolander, Tero Päivärinta

has largely concentrated on formal models and related constructive works (e.g. Kazman et al. 2001), especially manifested in the large body of architecture description languages (see e.g. Medvidovic and Taylor 2000). Accordingly, the literature seems to make an assumption that architecture serves mainly as a means for further design and implementation, “programming-in-the-large” (DeRemer and Kron 1976) from the perspective of the “system designer” (cf. Hofmeister et al. 1999; Kruchten 1995).

Other possible rationales for architecture, such as organizational knowledge creation or achievement of mutual understanding among diverse stakeholders of software development, are rarely discussed in the research. The state-of-the-art reports discuss little about these questions (cf. Shaw 2001), and the other than the technical purposes of architecture are often referred to with ad-hoc lists (IEEE 2000; Garlan 2000; Bass et al. 1998) without explicit empirical grounding or verification of their relative importance. Bosch (2000) presents a case study on the possibilities for organizing software product lines, but discusses only little about the varying rationales in architecture design and description. Robbins and Redmiles (1998) consider the idea of diverse knowledge and the theory of reflection-in-action (Schön 1983), but focus on the design work of a single architect leaving other interests untouched. (Grinter 1999) study on software architects in one company, however, indicates the communicational and political skills required from architects, as they must communicate with (and influence to) other stakeholders in numerous situations.

Our goal was to examine the rationale for architecture design and description in practice, seeking also for explanations for the possible variation between software-producing organizations. By rationale, we mean an underlying reason for making and using architecture descriptions. For instance, a designer may emphasize implementation support as the rationale, whereas an executive may need architecture descriptions for strategic decision-making. We also wished to associate architecture descriptions with the related stakeholders and with the viewpoints (cf. IEEE 2000) they need. In this report, we shall concentrate on resolving the prevalent and emphasized rationales in particular organizations and finding out the causes for the observed variations in the emphases. Another report (Smolander and Päivärinta 2002) explains the role of various stakeholders in detail.

An architecture description can be a document, presentation, plan, sketch, or any related genre of communication used in the architecture design process. This represents an idea somewhat broader from that of the IEEE 1471 recommended practice, which emphasizes the architecture’s documentation (IEEE 2000). A stakeholder is a person or a group of people involved in creating or using architecture descriptions in a way or another: e.g. designer, project manager, architect, general management, customer. The repertoire of
Practical Rationale for Describing Software Architecture

stakeholders varies between individual organizations. In the IEEE recommended practice (IEEE 2000), a viewpoint is a specification from which individual views are developed by establishing the purposes and audience for the views and the techniques for their creation and analysis. Instead of necessitating any existing specification to identify a viewpoint in our analysis as such, a view and its specifying viewpoint were not explicitly defined beforehand, as we hypothesized that the organizations likely had shortcomings in such definitions, and our prejudice on the viewpoint definition might have constrained the data collection and analysis.

This paper is organized as follows: the process in which we interviewed architects, designers, and managers in three software-producing organizations is described in Chapter 2. Chapter 3 contains the descriptions of emphasized rationales and found causal relationships in particular organizations. The results, suggesting that architecture, in practice, represents wider organizational connotations than the traditional “programming-in-the-large” metaphor would include, are discussed in Chapter 4. After that, we end the paper with conclusions.

2. RESEARCH PROCESS

The research followed the grounded theory method, a qualitative approach to creating new theory from data collected around the research theme in question (Strauss and Corbin 1990). Preliminary discussions with representatives of the target organizations had already implied that the concept of architecture would carry ambiguous connotations (Smolander et al. 2002). Hence, we analysed the connotations related to the concept of architecture by the stakeholders from the transcripts, which were produced from 19 theme-based and tape-recorded interviews in the target organizations, hereinafter referred to as Alfa, Beta, and Gamma (Table 1).

The basic idea of the grounded-theory-based data analysis resides in finding conceptual categories and abstractions related to the research goal from a rich set of interviewees’ mentions and other data, and in combining these categories meaningfully to provide theoretical insight into the phenomenon in question. For the analysis, the interviews were tape-recorded and transcribed. A software tool designed for grounded-theory-based data analysis (ATLAS.ii™) was used for managing and analyzing the data (all in the digital form), including also the documents about software processes and the examples of architecture descriptions. We started the analysis simply by searching for mentions about rationales and different stakeholders related to the architecture description process – we also had decided beforehand to focus on the mentions about the rationale of those stakeholders for producing
or using architecture descriptions. The conceptual categories of ‘rationale
and ‘stakeholder can thus be regarded as the high-level “seed categories”
(Miles and Huberman 1984) of the data analysis. This “open coding” phase
(Strauss and Corbin 1990) proceeded iteratively in parallel with the “axial
coding” phase, in which relationships between the identified categories were
built. The analysis progressed (in parallel with previous phases) with “selective
coding” in which the core of the research results was scrutinized to form
the report here.

Table 1. Characteristics of the target organizations

<table>
<thead>
<tr>
<th></th>
<th>Alfa</th>
<th>Beta</th>
<th>Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel in sw</td>
<td>200</td>
<td>200</td>
<td>400 + 600 (in two divisions)</td>
</tr>
<tr>
<td>development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for mobile terminals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical customers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manufacturers of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mobile hardware</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to specific technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interviews conducted</td>
<td>1 architect, 1 designer, 4 managers</td>
<td>2 architects, 2 designers, 1 manager of an in-house customer</td>
<td>3 architects, 1 designer, 2 managers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. ARCHITECTURE DESIGN AND DESCRIPTION IN THREE ORGANIZATIONS

Table 1 declares some basic characteristics of the target organizations. During the selective coding phase, we regarded the following conceptual
categories and the varying causal relationships observed between them in the
target organizations as particularly relevant in relation to the research goal:

– Product – the characteristics of software developed by the organization in
question.

– Customer orientation – the degree of interaction between a development
organization and its customers.

– Business orientation – the amount of reasoning conducted within a de-
velopment group about the business area of the software system in ques-
tion. This may be further divided into the orientation towards understanding
customer’s business and the orientation towards software organiza-
tion’s own business.

– Other business-related and organizational factors characteristic for each
organization. These included for instance strategic choices of technolo-
Practical Rationale for Describing Software Architecture

- Diversity of stakeholders – the number of stakeholder roles with different backgrounds, organizations, and professions involved in the software development process and projects.
- Rationale for architecture design and description (as declared above)

In the following, we shall describe how these categories appeared in the architecture design and description practices at the target organizations.

3.1 Emphasized rationales

Figure 1 depicts the causal relationships (the arrows in the picture) between the core categories resulting in the rationale for architecture design and descriptions that were observed in Alfa. As a software producer for mobile terminals, Alfa has made a very strong and binding commitment to a certain technology. Therefore, the development group does not generally need to reflect on the technological risks and the selection of technology actively because the risks and selections are readily embedded in the business strategy. In addition, Alfa as a formal subcontractor and a tool developer typically has low customer orientation, low business orientation among the developers, and low diversity of stakeholders with similar backgrounds and education. The emerging rationale for architecture design and description becomes then programming-in-the-large, as little reflection upon business or with other stakeholders is conducted. Architecture description is tied directly to implementation and to the transfer of explicit knowledge from architects to designers (and to some extent to the other stakeholders).

Figure 1. Emphasized rationales at Alfa

Beta’s situation (Figure 2) diverges from that of Alfa’s. The developers are business-oriented as the use of the software (for telecom services) produces revenue to the corporation per se. To make right decisions, the software engineers must understand also the revenue logic behind the business processes in which the software solutions are being used. The customer ori-
entation and diversity of stakeholders emphasize also slightly different role of architecture descriptions than in Alfa. Instead of further design and implementation as the main function, architecture emerges also as a tool for documenting decisions and making solutions and technologies explicit to the various stakeholders in different business units and technology centers inside the corporation. As the in-house software developer of the company, Beta must reflect on the corporate-wide strategies to the software production and therefore the reuse of reference architectures and product lines arises as a topic of interest as well.

Figure 2. Emphasized rationales at Beta

In its tailored software business, Gamma interacts intensively with a great variety of customers, including customer’s business responsibles, data administration, technical personnel, and users in various positions. In addition, Gamma as an integrator must co-operate intensively with other partners, such as vendors of interfacing systems, and hardware and software vendors. Hence, architecture descriptions are most essentially used as a means for communication (Figure 3). The understanding of the customer’s business is essential for the developers. Architecture thus becomes a rich
description of the reality that must be comprehended and shared among the heterogeneous collection of stakeholders, including the varying assemblies of customers and suppliers. The rationale and role of architecture description resides in communicating meanings and creating common objectives and mutual understanding among the stakeholders.

3.2 Used viewpoints in architecture description

In an earlier study conducted in the target organizations (Smolander et al. 2002), architects’ conceptions about the usage of architectural viewpoint were scrutinized. We found out that especially the business environment and the business practices followed had effects on the selection of architectural viewpoints by the architects. Our original objective here was to extend that earlier study and to find out the general combinations and relationships between rationale, stakeholders, and used viewpoints in the architecture design and description process. As mentioned above, we let the interviewees to define their own points-of-view to architecture and analyzed the meanings given for the concept from the transcripts. The analysis revealed that the concept of architecture carried varying connotations. To some, it included only the structure of software components, whereas to others, it included system’s stakeholders and their functionality, packages of business operations, network topologies, among many other features of the system.

With regard to the issue of viewpoints, the interviewees were generally rather unaware of such specific viewpoints recommended or defined in the literature (e.g. Kruchten 1995; Hofmeister et al. 1999; Zachman 1987). The concept of a viewpoint was not explicitly present in the target organizations’ process documents or architecture descriptions, nor recalled in the interviews. On the other hand, so-called “rich descriptions”, informally constructed and communicated among the stakeholders, were used in all kinds of situations; obeying no explicit viewpoint definition (as defined in IEEE 2000). These “rich descriptions” were used in negotiations with customers as well as in internal meetings and communication among the stakeholders. Typically, they included PowerPoint™ presentations and extensive textual documents comprising often tens of pages of text and pictures; e.g., imported UML-based models created with design tools such as Rational Rose™, which was used as well for architecture descriptions in all target organizations. The comprehensive textual documents were often regarded as “too specific” for other stakeholders than designers.

Furthermore, several interviewees were also rather unaware of all the rationales behind the descriptions. Some created architecture descriptions simply because it was defined obligatory in the process model and some were aware only of a proportion of the uses of their descriptions. These reasons
led us to abandon the original idea of trying to relate viewpoints explicitly to particular rationale and stakeholders (at least based on our contemporary amount of data).

4. DISCUSSION: VARYING RATIONALE FOR ARCHITECTURE DESCRIPTION

Emerging rationale related to architecture design and description clearly varied among the three target organizations and their stakeholders. In addition to the programming-in-the-large conception that was highlighted in Alfa (but only secondarily in Beta and Gamma), architecture design comprises decision-making, organizational communication, and documentation for maintenance and reuse. Figure 4 summarizes the findings related to the rationale for architecture design and description in the target organizations. The characteristics of the development organization, including the business and customer orientation and the diversity of stakeholders, evidently affect the rationale for architecture design and description. The rationale then steers the needs for tool and method support in architecture design and description. The development group must have tools and methods for transferring the knowledge about architecture between architects and designers, the descriptions must support and document decisions concerning architecture, the solutions must be made explicit enough to all stakeholders, and some level of common understanding about architecture must be achieved among a number of diverse stakeholders.

We recognized two sets of category combinations that provided an explanation to the formation of rationale for architecture design and description in the organizations. The higher business orientation, customer orientation, and the diversity of stakeholders, the more the rationale pointed towards communication and mutual understanding of architecture. Especially the role of a customer seemed to be of high importance emphasizing the communica-

![Figure 4. Varying rationale for architecture design and description](image-url)
tional aspects of architecture. On the other hand, the lower the business orientation, customer orientation, and the diversity of stakeholders, the more emphasis was put on architecture as programming-in-the-large, i.e. architecture design was seen more solely as the pre-phase for programming.

However, most of the current software architecture research recognizes only the second combination. Our study suggests that further research on the software architecture design and description should consider a wider scale of issues than the programming-in-the-large rationale or the plain viewpoint of the software engineer. Current conceptions on architecture design and description, including the proliferation of the formal languages and models that currently dominates the research on software architecture are somewhat based on such presuppositions about the rationale for architectural design that do not correspond with practice. The research should cover the evaluation of the role of formal vis-à-vis informal models and descriptions in architecture design – to what extent knowledge is created and transferred through formal models and to what extent through informal pictures, textual descriptions, and other social interaction. After that, we can determine effective means and tools to develop the architecture design and description process and methods. These means might slightly differ from the current focus on formal issues of architecture design.

5. CONCLUSION

In addition to the programming-in-the-large conception, a more holistic rationale of architecture description should be recognized in software-producing organizations. The rationale for architecture design and description should be carefully scrutinized considering a number of factors in the organizational context in question; such as the type of produced software, business orientation, customer orientation, and the diversity of stakeholders. Architecture descriptions can be deeply involved in requirements and customer management, organizational communication, and knowledge creation and management. In connection to the development of architectural practices in a particular software-producing organization, this fact should be respected and attention targeted on making the rationale for architectural descriptions explicit. The process of architecture design emphasizes different descriptions and viewpoints if the rationale resides in mutual understanding between diverse stakeholders compared to the aim of technical implementation within a uniform development group. The categories and causal relationships identified here contribute as a potential conceptual basis for improved tool and method support for architecture design.
REFERENCES

